PLANT LAYOUT

PLANT LAYOUT

Project Title: Lean Learning Academies (LLA)

Project Number: 503663-LLP-1-2009-1-BE-ERASMUS-ECUE

Grant Agreement: 2009 - 3308 / 001 - 001

Sub-programme or KA: ERASMUS

Lifelong Learning Programme

Disclaimer:

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Course content

- 1. Layout: definition
- 2. Lean plant layout
- 3. Layout types
- 4. Layout optimisation
- 5. Examples
- 6. References

1. Layout: definition

Layout design is about finding the best position for

- machines (in production settings) or
- desks (in office settings) or
- service centers (in e.g. hospitals, department stores,...)
 in order to facilitate flow of information, materials and people between areas.

2.1. A lean layout supports the organisation's strategy

Organisation's strategy	Priority	Layout requirements
Differentiation	High process flexibility, specific equipment, short setup times	Specialised cells
Low cost	Efficient processes, low cost of transportation and material handling	Product based layout
Quick respons	Rapid development, short setup times, short customer lead times	Short product routings

2.2. A lean plant layout takes into account

- Space utilisation
- Flow of information, materials and people
- Working conditions (safety, social aspect,...)
- Customer/client interaction
- Production flexibility
- Costs of material handling, space,...

2.3. Before designing a lean plant layout, determine

- Necessary material handling equipment
- Space requirements
- Required capacity
- Information flow
- Cost of moving between work areas

2.4. Keep in mind that

- a layout determines waste for many years.
- having nearby suppliers saves transportation costs.
- supplying directly to the workstations through multiple external doors, reduces transportation costs.
- designing a layout is a 3D-problem: consider deliveries from below or above.
- design and engineering areas should be close to manufacturing.
- production control should be in the middle of the plant floor.

3.1. Proces-oriented layout or job shop:

= technically identical machines/processes are grouped together in a workcenter

11/03/2021

Layout optimisation problem: facility location

11/03/2021

LLA

- Plant layout

10

- 3.2. Product-oriented layout or flow shop:
 - = machines/processes are put in a product routing sequence

Layout optimisation problem: line balancing

11/03/2021

LLA

- Plant layout

12

3.2. Product-oriented layout or flow shop: U-shaped lines

Iower walking distance shorter empty travel distance shorter deviation distance

LA

3.2. Product-oriented layout or flow shop: U-shaped lines

11/03/2021

3.2. Product-oriented layout or flow shop: U-shaped lines

more efficient 'rabbit chase' production

Education and Culture DG - 15

3.2. Product-oriented layout or flow shop: U-shaped lines

3.3. Cell layout or work cell:

= machines/processes are grouped into cells in which families of related products/services are processed

11/03/2021

3.3. Cell layout or work cell:

Layout KPI's	Work cell	
Amount of work in process	rather low	•••
Throughput lead time	rather low	•••
Traveling distance	rather low	••
Flexibility	rather low	••
Production continuity assurance	rather low	•
Work centre occupation	rather low	:

Layout optimisation problem: group technology

11/03/2021

LLA

- Plant layout

18

3.4. Other types of layout: (that will not be considered further)

• Fixed position layout or project layout:

= a layout in which a product is processed at a fixed position and all resources (machines, materials, people) are brought to that location.

Office layout

= a layout in which workers, equipment, desks and spaces are positioned to allow a fast and easy information flow.

Warehouse layout

= a layout that provides efficient space utilisation and easy material handling.

20

4.1. Job shop optimisation: facility location

4.2. Flow shop optimisation: line balancing Step 1: Determine process precedence relations

Step 2: Draw process precedence diagramme

Step 3: Calculate cycle time

Step 4: Calculate minimum number of workstations

Step 5: Assign tasks to workstations

Step 6: Calculate assembly line efficiency

4.2. Flow shop optimisation: line balancing Step 5: Solving the task assignment problem using

- Heuristics (do not guarantee the optimal solution)
 From the available tasks, choose the task:
 - with the longest time
 - with the largest number of following tasks
 - for which the sum of the times for each following task is longest
 - with the shortest task time
 - with the least number of subsequent tasks
- Optimisation techniques (provide the optimal solution)
 - Integer programming
 - Dynamic programming
 - Branch and bound

4.3. Work cell optimisation: group technology

This technique creates product families which each need a limited number of different machines

Step 1: Draw a process steps matrix

- with m rows representing m machines
- with n columns referring to n products
- $a_{ij} = 1$ if product j needs machine i and $a_{ij} = 0$ if not

Step 2: Use a technique to create product families

- heuristics:
 - o Rank Order Clustering (ROC) of King (1980)
 - o Direct Clustering Analysis (DCA) of Chan and Milner (1982)
 - o Cluster Identification Algoritm (CIA) of Kusiak and Chow (1987)

23

5.1. Example: job shop layout design:

Objective:

Allocate hospital facilities (1, 2, 3, 4, 5, 6) to rooms (A, B, C, D, E, F) measuring 8m x 8m in such a way that the total weekly distance (**quantitative** criterion!) patients have to be moved is minimised.

5.1. Example: job shop layout design:

Step 1: Estimate the number of patient movements between hospital facilities and put them in a from-to table

		1	2	3	4	5	6
	TO FROM	observation room	nursery	X-ray	laboratory	operating room	intensive care
1	Observ.	0	80	10	20	15	0
2	Nursery	95	0	5	10	0	0
3	X-ray	0	15	0	100	0	8
4	Laborat.	20	0	90	0	25	0
5	Operating	0	20	0	0	0	40
6	Intensive	0	35	0	0	60	0

11/03/2021

5.1. Example: job shop layout design:

Step 2: Turn the from-to table into a table representing movements between facilities

			2	3	4	5	6
	AND BETWEEN	observation room	nursery	X-ray	laboratory	surgery room	intensive care
1	Observ.	0	0	0	0	0	0
2	Nursery	175	0	0	0	0	0
3	X-ray	10	20	0	0	0	0
4	Laborat.	40	10	190	0	0	0
5	Surgery	15	20	0	25	0	0
6	Intensive	0	35	8	0	100	0

11/03/2021

Plant layout

26

5.1. Example: job shop layout design:

Step 3: Group all numbers into classes and for each class determine the number of lines for drawing the contact intensity graph

11/03/2021

LA

5.1. Example: job shop layout design:

Step 4: Draw the contact intensity graph starting with the highest contact intensities and rearrange the facility locations as soon as you discover improvement opportunities.

5.1. Example: job shop layout design:

Step 4: Draw the contact intensity graph starting with the highest contact intensities and rearrange the facility locations as soon as you discover improvement opportunities.

11/03/2021

5.1. Example: job shop layout design:

Step 4: Draw the contact intensity graph starting with the highest contact intensities and rearrange the facility locations as soon as you discover improvement opportunities.

11/03/2021

5.1. Example: job shop layout design:

Step 5: Replace facility numbers by facility names

6	2	3
intensive	nursery	X-ray
care	, i i i i i i i i i i i i i i i i i i i	-
5	1	4
operating	obser-	laboratory
oporating		laboratory
room	VOTION	
room	vation	

5.1. Example: job shop layout design:

Step 6: Use CRAFT to try to improve this layout

5.1. Example: job shop layout design:

Step 6: Use CRAFT to try to improve this layout

			2	3	4	5	6
	Tot. distance 5760 m	observation room	nursery	X-ray	laboratory	surgery room	intensive care
1	Observ.	0	0	0	0	0	0
2	Nursery	175 x 8m	0	0	0	0	0
3	X-ray	10 x 16m	20 x 8m	0	0	0	8
4	Laborat.	40 x 8m	10 x 16m	190 x 8m	0	0	0
5	Surgery	15 x 8m	20 x 16m	0 x 24m	25 x 16m	0	0
6	Intensive	0 x 16m	35 x 8m	8 x 16m	0 x 24m	100 x 8m	0

Distance measured between room centres through perpendicular paths!

5.1. Example: job shop layout design:

Step 6: Use CRAFT to try to improve this layout

CRAFT could not improve this layout!

Nr.	А	В	С	D	Е	F	Tot. distance	Nr.	Á	В	С	D	Е	F	Tot. distance
0	6	2	3	5	1	4	5760m 🖌	8	6	1	3	5	2	4	6328m
1	2	6	3	5	1	4	7984m	9	6	4	3	5	1	2	6328m
2	3	2	6	5	1	4	10408m	10	6	2	5	3	1	4	7864m
3	5	2	3	6	1	4	6272m	11	6	2	1	5	3	4	6008m
4	1	2	3	5	6	4	6408m	12	6	2	4	5	1	3	6352m
5	4	2	3	5	1	6	8344m	13	6	2	3	1	5	4	8008m
6	6	3	2	5	1	4	8904m	14	6	2	3	4	1	5	10408m
7	6	5	3	2	1	4	6088m	15	6	2	3	5	4	1	8448m

LLA

34

5.1. Example: job shop layout design:

Remark: What to do if rooms have unequal sizes?

Practical constraint:

$$\frac{lenght}{width} \leq 3$$

Only those solutions are feasible in which for each room the elementary areas are adjacent.

5.2. Example: job shop layout design:

Objective:

Design an editorial office layout that meets every employee's preferences (**qualitative** criterion!) as much as possible.

Step 1: Agree on the required space needed per function/equipment

function	m ² needed	equipment	m ² needed
Main editor	15	Archive	20
Secretary	16	Fax	1
Editors	40	Copier	2
Conservator	12		
DT publisher	10		
Production mgr.	15		

11/03/2021

5.2. Example: job shop layout design:

Step 2: Check whether or not the available area is big enough

5.2. Example: job shop layout design:

Step 3: Put all stakeholders' preferences in a relation diagramme

Symbol	Proximity
Α	Absolutely necessary
Е	Especially important
I	Important
0	Ordinary close
U	Unimportant
x	Undesirable

Code	Reason
1	Personal contact
2	Noise
3	Climatisation
4	Visitors
5	Frequent use
6	Screen reflexions

11/03/2021

LA

Plant layout

38

5.2. Example: job shop layout design:

Step 4: Draw a contact intensity graph

Symbol	Intensity
Α	
Е	
I	
0	
U	
X	

LA

5.2. Example: job shop layout design:

Step 5: Replace circles by proportional adjacent rectangles

11/03/2021

LA

5.3. Example: flow shop layout design:

Objective:

Design a balanced production line for continuous production of 40 products P/day. Assume 8 working hours a day.

5.3. Example: flow shop layout design:

Step 1: Determine precedence relations

Task	Duration (minutes)	Must immediately follow
А	7	-
В	3	А
С	6	А
D	9	А
E	1	А
F	2	В
G	8	C, D and E
H	3	F
I	5	G
J	6	Н
К	5	I and J

11/03/2021

LA

5.3. Example flow shop layout design:

Step 2: Draw a precedence diagramme

Lifelong Learning Programme

43

5.3. Example: flow shop layout design:

Step 3: Calculate cycle time

Cycle time = the time a product spends at a work station

= production time available per day/units required per day

= 8 hours/day / 40 products/day

= 0,2 hours/product

= 12 minutes/product

45

5.3. Example: flow shop layout design:

Step 4: Calculate minimum required number of work stations

5.3. Example: flow shop layout design:

Step 5: Assign tasks to work centres (using longest task time heuristic)

Work station	Task candidates	Assigned task	Task duration	Station time	ldle time
1	A	A	7	12	0
	B, C, D, E	В	3		
	C, D, E, F	F	2		
2	C, D, E, H	D	9	10	2
	C, E, H	E	1		
3	C, H	Н	8	8	4
4	C, J	С	6	11	1
	G, J	J	5		
5	G	G	3	9	3
	I		6		
6	K	K	5	5	7
	11/03/2021	- Plant lavout			

11/03/2021

Plant layout

Lifelong Learning Programme

Efficiency = $\frac{i=1}{actual \# workstations x largest assigned cycle time}$ = $\frac{55 \text{ minutes}}{25 \text{ minutes}}$

- 6 workstations x 12 minutes / workstation
- = 76,4%

11/03/2021

LA

5.4. Example: work cell layout design:

Objective:

Design work cells with a limited number of machines (A, B, C, D, E) to produce following 8 products (1, 2, 3, 4, 5, 6, 7, 8).

Step 1: Draw a process steps matrix

	1	2	3	4	5	6	7	8
А		X			X		Х	
В		X	Х		X			
С	Х			Х		Х	Х	Х
D			Х	X		Х		Х
E	Х					Х		

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families:

Rank Order Clustering (ROC)

	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	
	1	2	3	4	5	6	7	8	
А		Х			Х		Х		74
В		Х	Х		Х				104
С	Х			Х		Х	X	Х	151
D			Х	Х		X		X	53
E	Х					X			132

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families: *Rank Order Clustering (ROC)*

11/03/2021

LLA

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families: *Rank Order Clustering (ROC)*

	6	1	7	4	8	2	5	3	
С	Х	Х	Х	Х	Х				248
ш	Х	Х							192
В						Х	Х	Х	7
А			Х			Х	X		38
D	Х			Х	Х			Х	153
	25	24	18	17	17	6	6	5	

11/03/2021

51

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families: *Rank Order Clustering (ROC)*

LLA

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families: *Rank Order Clustering (ROC)*

	6	1	8	4	7	3	5	2		
С	Х	Х	Х	Х	Х				248	Γ
Е	Х	Х							192	
D	Х		Х	Х		Х			180	
А					Х		Х	Х	11	
В						Х	Х	Х	7	
	28	24	20	20	18	5	3	3		

11/03/2021

53

5.4. Example: work cell layout design:

Step 2: Use a technique to create product families: *Rank Order Clustering (ROC)*

6. References

Books

- Cedarleaf J., 'Plant Layout & Flow Improvement', Bleucreek Publishing company, 2nd edition, 1997.
- Meyers F.E. and Stephens M.P., 'Manufacturing Facilities Design and Material Handling, 2nd edition, Prentice Hall, 2000.
- Render B., Heizer J., 'Principles Of Operations Management', eight edition, PEARSON, 2010
- Heragu S.S., 'Facilities Design', PWS Publishing company, Third Edition, 1997.

